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Note

The Core Spreading Vortex Method
Approximates the Wrong Equation

In the (nonrandom) vortex blob method, solutions to Euler’s equations for
incompressible, inviscid fluid flow are approximated by the motion of finitely many
cores of vorticity of fixed shape. Two variations of the inviscid algorithm have been
proposed for the computation of solutions to the Navier—Stokes equations. These
are Chorin’s random vortex method and what we shall call the core spreading
method (see Leonard’s survey [4] for a discussion of both of these methods and a
list of references). In Chorin’s method, vortex cores of fixed shape make random
jumps for the simulation of diffusion. In the core spreading method, on the other
hand, the cores of vorticity are Gaussian functions spreading in time as exact
solutions of the heat equation, and randomness is eliminated.

The purpose of this note is to point out that the core spreading algorithm is
physically wrong and, indeed, converges to a system of equations different from the
Navier-Stokes equations. In the core spreading algorithm, vorticity is: correctly dif-
fused, but incorrectly convected, even in the limit of infinitely many vortices. We
restrict our attention to the simplest case, that is, 2-dimensional flow without boun-
daries. We take the viscosity to have value one and denote by # the vorticity at time
t=0, which we assume to be smooth and of compact support.

In the core spreading method (as in the inviscid vortex blob method) the
trajectories x,(¢) of a finite number of fluid- particles are calculated by the inte-
gration of a system of autonomous ordinary differential equations. In these
differential equations, the velocities dx,/dt are computed from the vorticity
distribution determined by the system of all the particles. Let ¢, denote the shape
of each vortex core at time ¢, so that ¢,(x)=@(x, 1), where ¢(x, ¢} is the solution
of the heat equation with initial condition ¢y(x). Thus, ¢,=G,* ¢,, where
G (x)=(4nt) ' exp(—|x|?/4t) is the heat kernel, and where * is the convolution
operator, 50 that G,  ¢o(x) = G (x —x") #o(x’) dx". The vorticity distribution from
which velocities at time ¢ are calculated is assumed to have the form

v )= ddx—x 1) ms,

where #; is typically either the total vorticity in a small region about a,= x (0}, or,

when the initial positions a; are the nodes of a grid of mesh width h, n,=#{(«;) h*;
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the summation is over all the particles. Set K(x)=V x (—log)(x) = (—x,, x,)/|x|?
and K, =K * ¢,. The velocity field v whose curl Vx v is { is given by

o, )= K {(x, )= L R(x=x0) e

The core spreading method consists of the system of equations
x{0)=a,, (1)

dx, 2
_c;’)%(l)zzK,(xi(f)—xj(f))"j' @

Set K,= K + G,, and consider the Lagrangian system of equations
&(e, 0) =1, (3)

o . ~
% (o )= [ KB, )~ B8, 0) n(B) d. @

Observe that K, =K * ¢, =K * G, * ¢, =K, * ¢,. Thus, Egs. (1)~(2) and (3)—~(4) dif-
fer from the inviscid vortex blob method (with core function ¢,) and the flow map
formulation of Euler’s equations, respectively, only in the replacement of K by X,.
In fact, if ¢, is radially symmetric and sufficiently smooth, with [ g2 ¢, = I, the «; are
chosen to be the nodes of a grid of mesh width A, n;=n(a;)- A% and ¢, tends to the
Dirac distribution while /# goes to zero, then the proof of the convergence theorem
of Beale and Majda [3] (or see [1]) can easily be adapted to the system (1)}-(2) to
show its convergence to (3)-(4). We now compare (3)—(4) to the Navier-Stokes
equations.
Define

a(x, 1) = | K,(x— B(B, 1)) n(B) dp. )

Thus, Eq. (4) can be written in the form 8@/01(x, t) = ii(P(a, 1), t). Let & denote the
passive transport of by @; then &(P(a, 1), t)=n(), and so 6&/0t+ (ii- V) & =0.
The vorticity corresponding to the system (3)-(4) is the function &=V x #. Since,
by a change of variables in the integral (5), =K, » £ = K x (G, * £), it follows that
G=Vxig=G, ¢

Whereas the Navier—Stokes vorticity satisfies

Jw )
—5;-V w—(uV)w,
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the vorticity @ satisfies

9o _ 0 e X vo_G (i
5775 (G O=VHG+ O+ G x ==V0— G, x (@ Ve). (6)

Taking second derivatives, we have

Po_yito (o
B ot

V(5 Vo V) Vet Vi V) o)

while

FGR0) , 060 e oy O . -
_672-_V —57~—V (@t Vg)—~—a—t VE+(@-VY{((z-V) &)
Since at time =0,

06 _d0 . 0u_ou
ot ot an or ot

we have, setting uy(x)=u{x, 0) = K * n{x),

o’ o

or ’“—a;z‘z (1o-V) V2’7 “Vz((”o'v) 1)

at time 7= 0. The right-hand side is in general nonzero, and so @ and & are not the
same functions. Observe, however, that in the radially symmetric case, when core
spreading happens to converge to the correct equations, both terms on the right-
hand side are zero.

It is interesting to compare the discussion given here with the results of [27].
Beale and Majda show that a convergent approximation to the Navier-Stokes
equations in free space is obtained by a splitting procedute in which, at each time
step, Euler’s equations are solved exactly, and then the heat equation is solved
exactly. In the core spreading method, the Euler part of the splitting is incorrectly
solved, for the vorticity is convected, not by the local velocity field, but by an
averaged velocity, as is clear from (6). Chorin’s random vortex method, on the
other hand, can be seen to be an approximation to the correct splitting procedure:
at each time step, Euler's equations arec solved and then the heat equation is
approximated by particle diffusion. In fact, Marchioro and Pulvirenti [5] have
shown that solutions of the stochastic differential equation, which is the con-
tinuous-time version of the random vortex method, converge to solutions of the
Navier-8Stokes equations.
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